el universo y el sistema solar

domingo, 29 de octubre de 2017

El sistema solar y su universo

TEORÍA DEL BIG BANG

El bing bang, literalmente gran estallido,constituye el momento en que de la nada emerge 
toda la materia, es decir, el origen del universo.
Inmediatamente despues del momento de la explotacion cada particula de materia comenzo a alejarse muy rapidamente una de otra de la misma manera que al inflar un globo este va ocupando mas espacio expandiendo su superficie.
los fisicos teoricos han logrado reconstruir esta cronologia de segundo despues del bing bang la materia lanzada de todas las direcciones por por la explocion primordial esta constituida exclusivamente por particulas elementales Electrones,mesones,Bariones, y 
fotones.
Historia y su desarrollo
Para al modelo del bing bang,muchos cientificos ,con diversos estudios,han ido construyendo el camino que lleva a la genesis de esta explicacion.los trabajos de alexander friedman ,del año 1922,y de georges lemaitre ,de 1927 utilizaron la teroria de la relatividad para demostrar que el universo estaba en movimiento constante. poco despues,en 1929 ,el astronomo  estadounidense edwin hubble 1889 y 1953 descubrio galaxias mas alla de la via lactea. 
Vision general
El universo en sus primeros momentos estaba lleno homogenea e isotopramente de una energia muy densa y tenia una temperatura y presion cocomitantes, se expandio y se enfio,experimentando cambios de fase analogos a la condensacion de vapor a la congelacion del agua.
Evidencias 
En general, se concideran tres las evidencias empiricas que apoyan la teoria cosmologica del bing bang. estas son: la expansion del universo que se expresa en la ley de hubble y que se puede apreciar en el corrimiento hacia el rojo de las galaxias, las medidas detalladas del fondo cosmico de microondas, y la abundancia de alimentos ligeros.


Resultado de imagen para todo sobre el big bang




sábado, 28 de octubre de 2017

venus

Venus

venus es el segundo planeta del sistema solar en orden de distancia desde el Sol, el sexto en cuanto a tamaño, ordenados de mayor a menor. Al igual que Mercurio, carece de satélites naturales. Recibe su nombre en honor a Venus, la diosa romana del amor (gr. Afrodita). Se trata de un planeta de tipo rocoso y terrestre, llamado con frecuencia el planeta hermano de la Tierra, ya que ambos son similares en cuanto a tamaño, masa y composición, aunque totalmente diferentes en cuestiones térmicas y atmosféricas (temperatura media de 463,85 ºC). La órbita de Venus es una elipse con una excentricidad de menos del 1 %, formando la órbita más circular de las de todos los planetas; apenas supera la de Neptuno. Su presión atmosférica es 90 veces superior a la terrestre; es, por tanto, la mayor presión atmosférica de las de todos los planetas rocosos del sistema solar.

Orbita 

Aunque todas las órbitas planetarias son elípticas, la órbita de Venus es la más parecida a una circunferencia, con una excentricidad inferior a un 1 %.
El ciclo entre dos elongaciones máximas (período orbital sinódico) dura 584 días. Después de esos 584 días Venus aparece en una posición a 72° de la elongación anterior. Dado que hay cinco períodos de 72° en una circunferencia, Venus regresa al mismo punto del cielo cada ocho años (menos dos días correspondientes a los años bisiestos). Este periodo se conocía como el ciclo Sothis en el Antiguo Egipto.
En la conjunción inferior, Venus puede aproximarse a la Tierra más que ningún otro planeta. El 16 de diciembre de 1850 alcanzó la distancia más cercana a la Tierra desde el año 1800, con un valor de 39 514 827 kilómetros (0,26413854 UA). Desde entonces nunca ha habido una aproximación tan cercana. Una aproximación casi tan cercana será en el año 2101, cuando Venus alcanzará una distancia de 39 541 578 kilómetros (0,26431736 UA).

Rotacion

Venus gira sobre sí mismo muy lentamente en un movimiento retrógrado, en el mismo sentido de las manecillas del reloj si se toma como referencia el polo norte, de este a oeste en lugar de oeste a este como el resto de los planetas (excepto Urano, que está muy inclinado), tardando en hacer un giro completo sobre sí mismo 243,0187 días terrestres. No se sabe el porqué de la peculiar rotación de Venus. Si el Sol pudiese verse desde la superficie de Venus aparecería subiendo desde el oeste y posándose por el este, con un ciclo día-noche de 116,75 días terrestres​ y un año venusiano de menos de dos días (1,92 días venusianos).

Atmofera de venus 

Venus tiene una densa atmósfera, compuesta en su mayor parte por dióxido de carbono y una pequeña cantidad de nitrógeno. La presión al nivel de la superficie es 90 veces superior a la presión atmosférica en la superficie terrestre (una presión equivalente en la Tierra a la presión que hay sumergido en el agua a una profundidad de un kilómetro). La enorme cantidad de dióxido de carbono de la atmósfera provoca un fuerte efecto invernadero que eleva la temperatura de la superficie del planeta hasta cerca de 464 °C en las regiones menos elevadas cerca del ecuador. Esto hace que Venus sea más caliente que Mercurio, a pesar de hallarse a más del doble de la distancia del Sol que este y de recibir solo el 25 % de su radiación solar (2 613,9 W/m² en la atmósfera superior y 1 071,1 W/m² en la superficie). Debido a la inercia térmica de su masiva atmósfera y al transporte de calor por los fuertes vientos de su atmósfera, la temperatura no varía de forma significativa entre el día y la noche. A pesar de la lenta rotaciónde Venus (menos de dos rotaciones por año venusiano, equivalente a una velocidad de rotación en el Ecuador de solo 6,5 km/h), los vientos de la atmósfera superior circunvalan el planeta en un intervalo de solo 4 días, distribuyendo eficazmente el calor. Además del movimiento zonal de la atmósfera de oeste a este, hay un movimiento vertical en forma de célula de Hadley que transporta el calor del ecuador hasta las zonas polares e incluso a latitudes medias del lado no iluminado del planeta.

Resultado de imagen

El Universo HD Los planetas interiores, Mercurio y Venus

                    

fotos de planetas

Resultado de imagen para fotos de planetas


Resultado de imagen para fotos de planetas


Resultado de imagen para fotos de planetas

planeta


Planetas 

Según la definición, el sistema solar consta de ocho planetas: MercurioVenusTierraMarteJúpiterSaturnoUrano y Neptuno. En cambio Plutón, que hasta 2006 se consideraba un planeta, ha pasado a clasificarse como planeta enano, junto a Ceres, también considerado planeta durante algún tiempo, ya que era un referente en la ley de Titius-Bode, y más recientemente considerado como asteroide y Eris, un objeto transneptuniano similar a Plutón. Ciertamente, desde los años setenta existía un amplio debate sobre el concepto de planeta a la luz de los nuevos datos referentes al tamaño de Plutón (menor de lo calculado en un principio), un debate que aumentó en los años siguientes al descubrirse nuevos objetos que podían tener tamaños similares. De esta manera, esta nueva definición de planeta introduce el concepto de planeta enano, que incluye a CeresPlutónHaumeaSednaMakemake y Eris; y tiene la diferencia de definición en (3), ya que no ha despejado la zona local de su órbita y no es un satélite de otro cuerpo.


Etimologia 

Etimológicamente, la palabra "planeta" proviene del latín planeta, que a su vez deriva del griego πλανήτης ('planētēs' «vagabundo, errante»). Esto se debe a que en la antigüedad, siguiendo la teoría geocéntrica de Ptolomeo, se creía que en torno a la Tierra, la cual era considerada el centro del cosmos, giraban el Sol y las cinco errantes o los cinco planetas errantes (MercurioVenusMarteJúpiter y Saturno), llamadas así por obstinarse a desobedecer la ley del círculo. Es decir, se les consideraba "errantes" debido a que, aparentemente y a simple vista, no trazaban ningún círculo alrededor de la Tierra, a diferencia del Sol.

Formacion


No se sabe con certeza como se forman los planetas. La teoría predominante es que lo hacen durante el colapso de una nebulosa en un delgado disco de gas y polvo. En el centro se forma una protoestrella rodeada de un disco protoplanetario en rotación. Mediante la acreción (un proceso de coalescencia por colisión), las partículas de gas y polvo del disco acumulan sin interrupción masa para formar objetos cada vez más grandes. Estas acumulaciones de masa, conocidas como planetesimales, aceleran el proceso de acreción por la atracción gravitatoria de materiales adicionales y se vuelven cada vez más densas hasta que colapsan bajo la gravedad para formar protoplanetas.​ Después de que un planeta alcanza una masa algo mayor que la de Marte, comienza a reunir una atmósfera extensa ​ que incrementa la tasa de captura de planetesimales por medio de la resistencia atmosférica.​ En función del modo de acreción de sólidos y gases, el resultado será un planeta gigante, un gigante de hielo o un planeta terrestre.

Segun sus movimientos en el cielo

  • Los planetas inferiores son aquellos que no se alejaban mucho del Sol (ángulo de elongación limitado por un valor máximo) y que, por tanto, no pueden estar en oposición, como Mercurio y Venus.
  • Los planetas superiores son aquellos que hacen oposición, y se toma como referencia a la Tierra. Es decir que, todos los que se alejan del Sol. Más allá de la órbita terrestre, son superiores, tienen órbitas más alejadas del Sol. Sus tamaños gigantescos y su composición líquida y gaseosa los hace muy diferentes de los planetas interiores, siendo bastantes menos densos que estos.
Suelen tener grandes atmósferas compuestas por helio e hidrógeno, con componentes de otras sustancias como agua, metano o amoníaco. Las configuraciones de un planeta exterior son:
  • Conjunción. El Sol se interpone entre la Tierra y el planeta, haciendo que este no se vea.
  • Oposición. Las direcciones del Sol y el planeta difieren en 180º, estando la Tierra entre ambos. La visión del planeta es óptima. A la puesta del Sol está en dirección Este, a medianoche al Sur, y al amanecer al Oeste. Es uno de los mejores momentos para observarlo. Además en la oposición la distancia planeta-Tierra es mínima.
  • Cuadratura oriental. Las direcciones del Sol y el planeta forman 90º hacia el Este. A la puesta del Sol el planeta está en la dirección Sur, y al amanecer en dirección Norte.
  • Cuadratura occidental. Las direcciones del Sol y el planeta forman 90º hacia el Oeste. A la puesta del Sol el planeta está en dirección Norte, y al amanecer en dirección Sur.
Los planetas interiores y exteriores, parten de un lugar de referencia que no es la Tierra: Es el cinturón de asteroides. Los planetas: Mercurio, Venus, La Tierra y Marte son internos. Los planetas: Júpiter, Saturno, Urano y Neptuno son exteriores.

Planetas extrasolares 

Desde 1988 el descubrimiento de Gamma Cephei Ab, confirmó una serie de descubrimientos que se han hecho de planetas en órbita alrededor de estrellas distintas del Sol. Hasta octubre de 2011 se habían descubierto 567 sistemas planetarios que contienen un total de 692 cuerpos. La mayoría de ellos tienen masas que son comparables o mayores que Júpiter. Entre las excepciones se incluyen una serie de planetas descubiertos en órbita alrededor de los restos quemados de estrellas llamados púlsares, como PSR B1257 +12, los planetas en órbita alrededor de las estrellas: Mu Arae55 Cancri y GJ 436, que son aproximadamente del tamaño de Neptuno, y un sistema planetario que contiene al menos dos planetas en órbita alrededor de Gliese 876.

Planetas interestelares

Varias simulaciones por ordenador de evolución estelar y formación de los sistemas planetarios han sugerido que algunos objetos de masa planetaria habrían sido expulsados al espacio interestelar. Algunos científicos han argumentado que esos objetos encontrados vagando en el espacio deben ser clasificados como "planetas". Sin embargo, otros han sugerido que podrían ser estrellas de baja masa. La definición de la UAI sobre planetas extrasolares no toma posición sobre la cuestión.
En 2005, los astrónomos anunciaron el descubrimiento de Cha 110913-773444, la enana marrón más pequeña encontrada hasta la fecha, con solo siete veces la masa de Júpiter. Ya que no se encuentran en órbita alrededor de una estrella de detonación, es una sub-enana marrón, de acuerdo con la definición de la UAI. Sin embargo, algunos astrónomos creen que debería ser denominada como planeta. Durante un breve tiempo en 2006, los astrónomos creían que habían encontrado un sistema binario de objetos, Oph 162225-240515, que los descubridores describen como "planemos", u "objetos de masa planetaria". Sin embargo, los últimos análisis de los objetos ha determinado que sus masas son mayores que 13 veces la de Júpiter; que es el tope de masa que debe tener un planeta para que en su núcleo no se produzcan combustiones termonucleares, es decir, para que no sea una estrella.


El Secreto De Los Agujeros Negros - Que Pasa Si Entras En Uno?

Agujeros negros: el gran enigma del universo - Documental

fotos de un aqujero negro

Resultado de imagen para agujero negro


Resultado de imagen para agujero negro


Resultado de imagen para agujero negro

proceso de formacion

Proceso de formacion 

Los agujeros negros proceden de un proceso de colapso gravitatorio que fue ampliamente estudiado a mediados de siglo XX por diversos científicos, particularmente Robert OppenheimerRoger Penrose y Stephen Hawking entre otros. Hawking, en su libro divulgativo Historia del tiempo: del Big Bang a los agujeros negros (1988), repasa algunos de los hechos bien establecidos sobre la formación de agujeros negros.
Este proceso comienza después de la "muerte" de una gigante roja (estrella de 30 o más veces la masa del Sol), entendiéndose por "muerte" la extinción total de su energía. Tras varios miles de millones de años de vida, la fuerza gravitatoria de dicha estrella comienza a ejercer fuerza sobre sí misma originando una masa concentrada en un pequeño volumen, convirtiéndose en una enana blanca. En este punto, dicho proceso puede proseguir hasta el colapso de dicho astro por la autoatracción gravitatoria que termina por convertir a esta enana blanca en un agujero negro. Este proceso acaba por reunir una fuerza de atracción tan fuerte que atrapa hasta la luz en este.
Por lo que este proceso comportaría la emisión de un número elevado de neutrinos. El resultado final, una estrella de neutrones. En este punto, dependiendo de la masa de la estrella, el plasma de neutrones dispara una reacción en cadena irreversible, la gravedad aumenta enormemente al disminuirse la distancia que había originalmente entre los átomos. Las partículas de neutrones implosionan, aplastándose más, logrando como resultado un agujero negro, que es una región del espacio-tiempo limitada por el llamado horizonte de sucesos. Los detalles de qué sucede con la materia que cae más allá de este horizonte dentro de un agujero negro no se conocen porque para escalas pequeñas sólo una teoría cuántica de la gravedad podría explicarlos adecuadamente, pero no existe una formulación completamente consistente con dicha teoría.

historia del aqujero negro

Historia

El concepto de un cuerpo tan denso que ni siquiera la luz puede escapar de él, fue descrito en un artículo enviado en 1783 a la Royal Society por un geólogo inglés llamado John Michell. Por aquel entonces la teoría de Newton de la gravitación y el concepto de velocidad de escape eran muy conocidas. Michell calculó que un cuerpo con un radio 500 veces el del Sol y la misma densidad, tendría, en su superficie, una velocidad de escape igual a la de la luz y sería invisible. En 1796, el matemático francés Pierre-Simon Laplace explicó en las dos primeras ediciones de su libro Exposition du Systeme du Monde la misma idea aunque, al ganar terreno la idea de que la luz era una onda sin masa, en el siglo XIX fue descartada en ediciones posteriores.
En 1915Einstein desarrolló la relatividad general y demostró que la luz era influida por la interacción gravitatoria. Unos meses después, Karl Schwarzschild encontró una solución a las ecuaciones de Einstein, donde un cuerpo pesado absorbería la luz. Se sabe ahora que el radio de Schwarzschild es el radio del horizonte de sucesos de un agujero negro que no gira, pero esto no era bien entendido en aquel entonces. El propio Schwarzschild pensó que no era más que una solución matemática, no física. En 1930Subrahmanyan Chandrasekhar demostró que un cuerpo con una masa crítica, (ahora conocida como límite de Chandrasekhar) y que no emitiese radiación, colapsaría por su propia gravedad porque no había nada que se conociera que pudiera frenarla (para dicha masa la fuerza de atracción gravitatoria sería mayor que la proporcionada por el principio de exclusión de Pauli). Sin embargo, Eddington se opuso a la idea de que la estrella alcanzaría un tamaño nulo, lo que implicaría una singularidad desnuda de materia, y que debería haber algo que inevitablemente pusiera freno al colapso, línea adoptada por la mayoría de los científicos.
En 1939Robert Oppenheimer predijo que una estrella masiva podría sufrir un colapso gravitatorio y, por tanto, los agujeros negros podrían ser formados en la naturaleza. Esta teoría no fue objeto de mucha atención hasta los años 60 porque, después de la Segunda Guerra Mundial, se tenía más interés en lo que sucedía a escala atómica.
En 1967Stephen Hawking y Roger Penrose probaron que los agujeros negros son soluciones a las ecuaciones de Einstein y que en determinados casos no se podía impedir que se crease un agujero negro a partir de un colapso. La idea de agujero negro tomó fuerza con los avances científicos y experimentales que llevaron al descubrimiento de los púlsares. Poco después, en 1969, John Wheeler7​ acuñó el término "agujero negro" durante una reunión de cosmólogos en Nueva York, para designar lo que anteriormente se llamó "estrella en colapso gravitatorio completo".

aqujero negro

Agujero negro

Un agujero negro​ es una región finita del espacio en cuyo interior existe una concentración de masa lo suficientemente elevada como para generar un campo gravitatorio tal que ninguna partícula material, ni siquiera la luz, puede escapar de ella. Sin embargo, los agujeros negros pueden ser capaces de emitir radiación, lo cual fue conjeturado por Stephen Hawkingen la década de 1970. La radiación emitida por agujeros negros como Cygnus X-1 no procede del propio agujero negro sino de su disco de acreción.

Proceso de formacion 

Los agujeros negros proceden de un proceso de colapso gravitatorio que fue ampliamente estudiado a mediados de siglo XX por diversos científicos, particularmente Robert OppenheimerRoger Penrose y Stephen Hawking entre otros. Hawking, en su libro divulgativo Historia del tiempo: del Big Bang a los agujeros negros (1988), repasa algunos de los hechos bien establecidos sobre la formación de agujeros negros.
Este proceso comienza después de la "muerte" de una gigante roja (estrella de 30 o más veces la masa del Sol), entendiéndose por "muerte" la extinción total de su energía. Tras varios miles de millones de años de vida, la fuerza gravitatoria de dicha estrella comienza a ejercer fuerza sobre sí misma originando una masa concentrada en un pequeño volumen, convirtiéndose en una enana blanca. En este punto, dicho proceso puede proseguir hasta el colapso de dicho astro por la autoatracción gravitatoria que termina por convertir a esta enana blanca en un agujero negro. Este proceso acaba por reunir una fuerza de atracción tan fuerte que atrapa hasta la luz en este.

Clasificacion teorica


Segun sus propiedades fisicas 

Existe un teorema sobre propiedades de los agujeros negros que se suele enunciar diciendo que «un agujero negro no tiene pelo» (en inglés No-hair theorem); el teorema afirma que cualquier objeto que sufra un colapso gravitatorio alcanza un estado estacionario como agujero negro descrito sólo por tres parámetros: su masa , su carga  y su momento angular . Así tenemos la siguiente clasificación para el estado final de un agujero negro

El Origen de la Luna

fotos de la luna

Resultado de imagen para la luna

Resultado de imagen para la luna

Resultado de imagen para la luna

las fases de la luna

Las fases de la luna 

Según la disposición de la Luna, la Tierra y el Sol, se ve iluminada una mayor o menor porción de la cara visible de la Luna.

La Luna Nueva o novilunio es cuando la Luna está entre la Tierra y el Sol y por lo tanto no la vemos.
En el Cuarto Creciente, la Luna, la Tierra y el Sol forman un ángulo recto, por lo que se puede observar en el cielo la mitad de la Luna, en su período de crecimiento.
La Luna Llena o plenilunio ocurre cuando La Tierra se ubica entre el Sol y la Luna; ésta recibe los rayos del sol en su cara visible, por lo tanto, se ve completa.
Finalmente, en el Cuarto Menguante los tres cuerpos vuelven a formar ángulo recto, por lo que se puede observar en el cielo la otra mitad de la cara lunar.
Fases de la Luna

Las 4 fases de la Luna

los eclipses

Los eclipses

En el caso de la Tierra, la Luna y el Sol tenemos dos modalidades: eclipses de Sol, que consisten en el oscurecimiento del Sol visto desde la Tierra, debido a la sombra que la Luna proyecta; y eclipses de Luna, que son el oscurecimiento de la Luna vista desde la Tierra, debido que ésta se situa en la zona de sombra que proyecta la Tierra.


Si colocamos una pelota entre la luz y la pared se observará sobre la pared una sombra circular intensa y otra mayor, pero más débil. De igual manera, la luna y la tierra proyectan en el espacio gigantescos conos de sombra producidos por la iluminación del sol.
Cuando la luna se interpone entre la tierra y el sol, el cono de su sombra se proyecta sobre una zona de la tierra, y las personas que habitan en esa zona quedan en la oscuridad, como si fuese de noche, porque la luna eclipsa, tapa al sol. Este astro se ve como cubierto, que no es otra cosa sino la luna. Esto es un eclipse de sol.
Del mismo modo, cuando la luna cruza el cono de sombra de la tierra, desaparece a la vista de los habitantes del hemisferio no iluminado (noche) los cuales pueden presenciar, en su totalidad, el eclipse de luna.
El eclipse de sol se produce solamente sobre una pequeña faja de la tierra, porque la luna, por su menor tamaño, no oculta completamente al sol para la totalidad de la tierra.

la luna

La Luna

La Luna es el único satélite natural de la Tierra. Con un diámetro ecuatorial de 3474 km1​ es el quinto satélite más grande del Sistema Solar, mientras que en cuanto al tamaño proporcional respecto de su planeta es el satélite más grande: un cuarto del diámetro de la Tierra y 1/81 de su masa. Después de Ío, es además el segundo satélite más denso. Se encuentra en relación síncrona con la Tierra, siempre mostrando la misma cara hacia el planeta.

Etimologia 

La palabra que designa al satélite de la Tierra, luna, procede del latín. En esta lengua era originalmente el femenino de un adjetivo en -no- *leuk-s-no, 'luminoso'. Por lo tanto, la palabra luna significa 'luminosa', 'la que ilumina'. Este adjetivo latino deriva de la raíz *lūc-/lǔc- ('brillar', 'ser luminoso'), de donde proceden igualmente lux ('luz'), luceo ('lucir'), lumen ('luz'), etc. A su vez, esta raíz procede de la raíz indoeuropea *leuk-, que se encuentra en otras lenguas en términos relacionados con la luz, como el griego


Formación


Varios mecanismos han sido propuestos para explicar la formación de la Luna hace 4527±10 millones de años. Esta edad está calculada, según la datación del isótopo de las rocas lunares, entre 30 y 50 millones de años luego del origen del sistema solar.​ Estos incluyen la fisión de la Luna desde la corteza terrestre a través de fuerzas centrífugas, que deberían haber requerido también un giro inicial de la Tierra.



Revolucion de la luna 

La Luna tarda en dar una vuelta alrededor de la Tierra 27 d 7 h 43 min si se considera el giro respecto al fondo estelar (revolución sideral), pero 29 d 12 h 44 min si se la considera respecto al Sol (revolución sinódica) y esto es porque en este lapso la Tierra ha girado alrededor del Sol (ver mes). Esta última revolución rige las fases de la Lunaeclipses y mareas lunisolares. Como la Luna tarda el mismo tiempo en dar una vuelta sobre sí misma que en torno a la Tierra, presenta siempre la misma cara.

Movimiento de traslacion lunar 

El hecho de que la Luna salga aproximadamente una hora más tarde cada día se explica conociendo la órbita de la Luna alrededor de la Tierra. La Luna completa una vuelta alrededor de la Tierra aproximadamente en unos 28 días. Si la Tierra no rotase sobre su propio eje, sería muy fácil detectar el movimiento de la Luna en su órbita. Este movimiento hace que la Luna avance alrededor de 12° en el cielo cada día. Si la Tierra no rotara, lo que se vería sería la Luna cruzando la bóveda celeste de oeste a este durante dos semanas, y luego estaría dos semanas ausente (durante las cuales la Luna sería visible en el lado opuesto del Globo).